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Eccentric connectivity polynomials of fullerenes
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The eccentric connectivity polynomial of a molecular graph G is defined as ECP(G,x) = Zy.v@G)X

) where ecc(x) is defined

as the length of a maximal path connecting x to a vertex of G. In this paper this polynomial is computed for an infinite family

of fullerenes.
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1. Introduction

Fullerenes are zero-dimensional nanostructures,
discovered experimentally in 1985 [1]. Fullerenes are
carbon-cage molecules in which a number of carbon atoms
are bonded in a nearly spherical configuration. Let p, h, n
and m be the number of pentagons, hexagons, carbon
atoms and bonds between them, in a given fullerene F.
Then F made entirely of n carbon atoms, have 3n/2 edges,
12 pentagonal and (n/2 — 10) hexagonal faces, while n #
22 is a natural number equal or greater than 20 [2].

Mathematical chemistry is a branch of theoretical
chemistry for discussion and prediction of the molecular
structure using mathematical methods without necessarily
referring to quantum mechanics. Chemical graph theory is
an important tool for studying molecular structures [3-7].
This theory has an important effect in the development of
chemical sciences.

Throughout this paper, graph means simple connected
graph. The vertex and edge sets of a graph G are denoted
by V(G) and E(G), respectively. If x, y € V(G) then the
distance d(x,y) between x and y is defined as the length of
a minimum path connecting x and y. The eccentric
connectivity index of the molecular graph G, £°(G), was
proposed by Sharma, Goswami and Madan®. It is defined
as £(G) = Z,cv(gdegs(u)ecc(u), where degg(x) denotes
the degree of the vertex x in G and ecc(u) = Max {d(x,u) | x
€ V(G)} [9-14]. The radius and diameter of G are defined
as the minimum and maximum eccentricity among
vertices of G, respectively.

We now define the eccentric connectivity polynomial
of a graph G, ECP(Gx), as ECP(Gx) =
Eagy(g)degg(a)x"“(“) . Then the eccentric connectivity index
is the first derivative of ECP(G, x) evaluated at x = 1.
Herein, our notation is standard and taken from the
standard book of graph theory.

2. Main results and discussion

The aim of this section is to compute ECP(G,x), for an
infinite family of fullerenes. We encourage the reader to
consult papers [15-27] for background material as well as
basic computational techniques. In Table 1, the EC
polynomials of Cjy,, fullerenes, Fig. 1, are computed,
2<n<T7.

Table 1. Some exceptional cases of Cu+ 1) fullerenes.

Fullerenes EC Polynomials
Ceo 60x°
Cg4 84X1 T

C]()g 84X11+24Xlj

Cian 60x"7+24x P +24x+24x

Ciss 36x124+24x P 24x M 24x P +24x 0424

Cigo 12x7+24x P +24x P +24x P +24x 0+ 24x T+24x +24x "

When n > 8, we have the following general formula
for the EC polynomial of this class of fullerenes:

Theorem 1. The EC polynomial of Cipni), 0 28,

fullerenes are computed as
ECP(Ciz@ni1y,X) = 12x" 5104 x 0t 6 Xxn__ll '

Proof. From Fig. 2, one can see that there are two
types of vertices of fullerene graph Ci,gn+1). These are the
vertices of the central hexagon and other vertices of
Ci2@n+1). Obviously, we have:

Vertices ecc(x) No.
The Type 1 Vertices n+i(6<5i<nt5) 24
The Type 2 Vertices n+5 12

By using these calculations and Fig. 2, the theorem is
proved.
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Fig. 1. The Molecular graph of the Fullerene C 5+ ).

Corollary. The diameter of Cyn41) fullerene, n > 2 is
2n+5.

Fig. 2. The value of ecc(x) for vertices of central and
outer hexagons.

In Table 2, the EC polynomials of Ci,,.4 fullerenes,
Fig. 3, are computed, 2 < n <7. For n > 8 we have the
following general formula for the EC polynomial of this
class of fullerenes.

Other Vertices

Fig. 3. The molecular graph of the Fullerene C3,. .

Theorem 2. The EC polynomial of the fullerene
Cian+4(n >8), fullerenes are computed as follows:

n+l _1

ECP(Cianax) = 36 x "1 x—l
P

+12X2n+1.

Proof. From Fig. 3, one can see that there are two
types of vertices of fullerene graph Cy,4. These are the
vertices of the central pentagons and other vertices of
Ci2n+4. Obviously, we have:

Vertices ecc(x) No.
The Type 1 Vertices 2n+1 4
Other Vertices nti (1<i <n+1) 12

By using these calculations and Fig. 4, the theorem is
proved.

9 _HC orollary. The diameter of Cizni4 fullerenes, n >4, is
X < 77X 7
HHHD

Fig. 4. The value of ecc(x) for vertices of central and
outer polygons.

Some exceptional cases are given in the following
table:

Fullerenes EC Polynomials
Cag 12x°+16x°
C40 36X7+4X8
Cs, 12x7+32x5+8%°
Cea 24x3+24x7+12x 0+4x T
Crs 12x54+24x7+12x10+12x ' +12x > +4x
Cas 24x7+12x 0+ 12x T+ 12x P+ 1 2% P+ 12x 4k TP

Table 2. Some exceptional cases of Cj,+4 Fullerenes.

3. Concluding remarks

In this paper a method for computing eccentric
connectivity index of fullerenes is presented. We apply our
method on two infinite families of fullerenes. Our
calculation given here is efficient and can be applied in
general to other fullerenes.
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